
An Agent Inspired Reconfigurable Computing Implementation of a
Genetic Algorithm

John M. Weir and B. Earl Wells

March 14, 2003

Abstract emerge from when multiple agents interact with one
another.

Many software systems have been successfully im- Although many competing definitions of what con-
plemented using an agent paradigm which employs stitutes an agent exist there is generally good agree-
a number of independent entities that communicate ment that agents should operate in a system with
with one another to achieve a common goal. The other agents and that the agents should display
distributed nature of such a paradigm makes it an the characteristics of autonomy and sociability [I].
excellent candidate for use in high speed reconfig- Agents are autonomous in that they operate inde-
urable computing hardware environments such as pendently and asynchronously. Each agent makes its
those present in modem FPGA’s. In this paper, a own decisions on actions to take and does not oper-
distributed genetic algorithm that can be applied to ate either as a master or a slave. Agents are social in
the agent based reconfigurable hardware model is in- that they communicate with other agents in the sys-
troduced. The effectiveness of this new algorithm is tem to exchange data. Multiagent systems are com-
evaluated by comparing the quality of the solutions prised of potentially many independent, autonomous,
found by the new algorithm with those found by tra- relatively simple agents that communicate with one
ditional genetic algorithms. The performance of a another and cooperate and/or compe to achieve a
reconfigurable hardware implementation of the new common goal.
algorithm on an FPGA is compared to traditional
single processor implementations. 2 Reconfigurable Computing

Implementation of Agents
1 Introduction

Since its introduction in the mid 1980s the Mul-
tiagent paradigm for constructing software system
has grown dramatically. Multiagent systems emerged
from the field of Distributed Artificial Intelligence
(DAI) and have become prevalent in DAI. Multiagent
systems are comprised of a number of relatively sim-
ple computational entities known as agents that are
capable of communicating with one another. Multiai
gent systems are inherently distributed and have no
centralized control. Although each agent’s computa-
tion is relatively simple, fairly complex behavior can

Fkcently, reconfigurable computing implementations
of multiagent systems have been proposed [2, 31.
These reconfigurable computing agent implementa-
tions have the potential of providing systems with
higher performance than multiple agent systems im-
plemented using an instruction set processor. Agents
display several characteristics that make them a good
candidate for reconfigurable computing implementa-
tions.

First, each agent is usually relatively simple. This
suggests that several agents could be implemented on
a single FPGA. Furthermore, since it is frequently the

1

case that all of the agents are identical to one another,
the regular structure of the multiagent system also
facilitates its efficient implementation on an FPGA
or other reconfigurable device.

Also, multiagent systems are inherently distributed
and have no centralized control and the agents com-
municate with each other asynchronously. This struc-
ture allows the agents to be placed on the FPGA in
a manner that minimizes timing concerns. Further-
more, the distributed architecture and asynchronous
communication scheme map well to a multiple FPGA
device implementation if the total number of agents
desired exceeds the capacity of a single device.

2.1 An Agent Inspired Genetic Aigo-
rithm

Genetic algorithms map well to a multiple agent sys-
tem where each agent performs the role of a single
individual in the population. In this model, the com-
putation required of each agent is relatively simple.
To implement a genetic algorithm, offspring must be
formed using crossover and mutation operations and
the fitness of the offspring must be computed. In a
multiagent paradigm it is desirable to perform these
computations locally at each agent to avoid central-
ized control and its associated bottlenecks. However,
a standard genetic algorithm such as that presented
in [4] has features that are not amenable to imple-
mentation as a multiple agent system.

Hence, the standard genetic algorithm was modi-
fied to produce an algorithm in which al1,decisions
are made locally within the agent that implements
each individual in the population. This modified ge-
netic algorithm is called Genetic Algorithm for Re-
configurable computing (GARC). Furthermore, the
decisions for mating and population replacement re-
quire only the fitness value of the individual’s mate
to be received from another agent. Thus, GARC exe-
cutes independently in each agent with limited infor-
mation from other agents in the system. GARC uti-
lizes a number of agents to represent each individual
in the population and one additional agent called the
Global Fitness Registry agent that saves the chromo-
some and fitness of the best solution found to date.
The GARC is summarized below from the standpoint

of a single agent in the system.

While (not Done)
Send chromosome and fitness
If (one or more chromosomes are received)

Form child using crossover
else

Form child using mutation
If (Child’s Fitness is better than Parent’s fitness)

Replace chromosome and fitness with Child’s
Register chromosome and fitness

end while

In the GARC algorithm a single child will be
formed by each agent for each generation. Although
variations of GARC were evaluated in which the par-
ents mated at each agent could be any two individ-
uals in the population, the performance for the eval-
uated fitness functions was comparable if each agent
also served as a parent with the mating chromosome
coming from another individual in the population.
Since the latter approach requires less communica-
tion and is simpler to implement in reconfigurable
computing, the algorithm described here uses that
approach. Each individual will randomly choose one
or more other individuals to solicit for mating each
generation. The mating solicitation occurs by send-
ing the soliciting agent’s chromosome and fitness to
one or more other agents in the system. A system pa-
rameter controls how many other agents each agent
will solicit for mating each generation.

For example, agent 0 may choose to solicit agent
1 for mating. Agent 0 will send its chromosome and
Fitness value to agent 1. If agent 0 has the best fit-
ness value of all of the agents who solicited agent 1
€or that generation then agent 1 will choose to mate
with agent 0 by using the chromosome sent by agent
0 for crossover with its own chromosome to produce
a single offspring. The offspring produced may also
be mutated. If agent 1 is solicited by an agent with
a better fitness value than agent 0 then agent 1 will
not use the chromosome sent by agent 0 but will use
the other agents chromosome instead. If an agent re-
ceives no chromosomes from other agents in a gener-
ation then an offspring will be produced by mutating
the agent’s chromosome.

2

Thus, in GARC, each generation of n individuals
will be formed by& parents. Every individual in
the population will be guaranteed to serve as a par-
ent at least once every generation (each agent always
uses its own chromosome for crossover or mutation).
However, individuals with better fitness values will
be more likely to be chosen as parents multiple times.
In fact, the best individual will be guaranteed to be
a parent one more time than the system parameter
defining the number of mating solicitations per gener-
ation per individual (once by the individual itself and
once by each of the individuals it solicited). Thus, the
mating selection is biased towards individuals with
better fitness values and the system parameter in-
creases the selection pressure as it is increased. This
allows GARC to implement a biased mating selection
policy while each individual has limited knowledge of
other individuals fitness values and with no central-
ized computation so each agent can make decisions
locally with only the data communicated to i t by
other agents. This behavior is adaptable to the agent
paradigm of autonomous operation with incomplete
knowledge of the system.

Also, GARC implements a biased replacement pol-
icy using only local information which is a variation
of binary tournament selection [13]. In binary tour-
nament selection two individuals are selected at ran-
dom from the population and the individual with the
betteTfitness is retained for the next generation. In
the version of binary tournament selection used in
GARC the selection is not random and each child
is entered into a tournament competing with one of
its parents. Variations of GARC in which the tour-
nament would not be between parent and child pro-
duced similar results, so the current implementation
of GARC implements a binary tournament between
child and parent which requires less communication
and is more efficient to implement in hardware. Each
agent either replaces its own chromosome with the
chromosome of the offspring it formed or retains the
previous generations chromosome. Again, each agent
is able to act autonomously with incomplete system
knowledge. Hence, the GARC algorithm conforms to
the agent paradigm of autonomous entities commu-
nicating with one another and making independent
decisions with incomplete knowledge of the system.

3 GARC Performance on a
Conventional Computer

GARC was first implemented on a conventional com-
puter system in the C programming language to test
its performance using several fitness functions and
evaluate several variations of the algorithm. The fi-
nal implementation of the GARC was chosen to of-
fer reasonable performance compared to traditional
genetic algorithms while allowing for fast and effi-
cient implementation in hardware. Although there
are many variations of genetic algorithms which may
offer better performance, two were chosen for com-
parison to GARC. The first was the simple genetic
algorithm outlined in [4] and the second was a simi-
Jar algorithm that implemented a biased replacement
strategy.

One fitness function used to evaluate GARC was
the well known ONEMIN fitness function. This fit-
ness function is simply the number of ones in the
chromosome. The chromosome used was 32 bits long.
The genetic algorithms attempted to minimize the
fitness function. This fitness function has no Io-
cal minimums and rewards algorithms that converge
quickly. Another fitness function used was the we11
known traveling salesman problem (TSP). The prob-
lem instance used was from [5] and was the 29 city
problem known as bays29.

A number of test runs of the GARC and each of
the two more traditional genetic algorithms were per-
formed with the number of generations capped at
5000 and the population size was set to 64 and the
results were averaged. A completely random search
of the state space for each of the fitness functions was
also executed and its performance was compared to
the performance of the genetic algorithms. The num-
ber of generations required to find the optimal solu-
tion (for the ONEMIN fitness function) or the best
solution found (for the TSP) were recorded and com-
pared to gauge the performance of the algorithms.

3

.-

Algorithm

Unbiased Replacement Unbiased Replacement
Biased Replacement 1.19

GARC 100 GARC 2987 1.34

Table 1: ONEMIN Performance Comparison

3.1 GARC Performance for ONEMIN
Fitness Function

The ONEMIN fitness function was used with the
GARC, a random search, and the two variations of
the traditional genetic algorithm (unbiased and bi-
ased replacement strategy) with a population size
of 64 and number of generations capped at 5000.
The mean number of generations each algorithm exe-
cuted, and the percentage of runs in which an optimal
solution was found are shown in Table 1.

The random search was unable to find the optimal
solution in 5000 generations while the genetic algo-
rithms found the optimal solution every time. The
biased replacement policy version of the traditional
genetic algorithm performed best with the GARC
performing next best and the unbiased replacement
policy GA performing considerably worse. It was ex-
pected that the biased replacement policy algorithm
would perform better for this fitness function since
it will converge faster and the ONEMIN fitness func-
tion has no local minimums. From these results it
appears that GARC converges faster than the unbi-
ased replacement policy algorithm but not as fast as
the biased replacement policy algorithm.

3.2 GARC Performance for the Trav-
eling Salesman Problem

The 29 city TSP was used as a fitness function with
the GARC, a random search, and the traditional
genetic algorithm with unbiased replacement policy
with a population size of 64 and the number of gener-
ations capped at 5000. The 29 city traveling salesman
problem (TSP) used as a fitness function had a much
larger search space than the fitness functions used.
Consequently, none of the algorithms were able to

Table 2: TSP Performance Comparison

find an optimal solution to the TSP instance. There-
fore, the performance of the algorithms was measured
by comparing the average best fitness value found and
the ratio of this value to the known optimal value.
These results are shown in Table 2.

Again, all of the genetic algorithms performed sig-
nificantly better than the random search algorithm
and the GARC algorithm performed better than the
unbiased replacement genetic algorithm but not as
well as the biased replacement traditional genetic al-
gorit hm .

4 GARC Implementation in
Reconfigurable Hardware

Once the implementation of the GARC algorithm on
a traditional computer system had demonstrated that
it was capable of producing reasonably good results
when compared to conventional genetic algorithms
it was implemented in reconfigurable hardware on a
standard FPGA. The performance of this implemen-
tation was compared to the software implementation
executing on a conventional computer system. The
FPGA implementation was targeted to a Xilinx 2000e
560 FPGA using the Handel C hardware description
language (HDL) [SI. The Handel C language compiler
executed on a standard PC in which a PCI board
with the Xilinx FPGA was installed. The GARC
interfaced to a C program executing on the PC to
report results after the run was complete. The fit-
ness function implemented was the ONEMIN fitness
function previously described. The number of agents
implemented was varied from 3 to 17.

The first step in implementing the GARC in the
FPGA was to determine how to take advantage of
the parallelism afforded by the hardware. The im-

4

plementation of the GARC included coarse grained,
medium grained, and fine grained parallelism. The
coarse grained parallelism was obtained by executing
each agent as a separate hardware entity. Thus, each
agent in the system could operate in parallel. The
medium grained parallelism was obtained by execut-
ing the major subsystems of each agent in parallel
where practical. The fine-grained parallelism was ob-
tained using the par construct of the Handel C lan-
guage to execute individual HDL statements in par-
allel.

Each agent consisted of four separate subsystems
operating in paralIel. These subsystems were the
Random Number Generator (RNG), the SendMate
unit, the GetMate unit, and the Spawn unit. The
Random Number Generator provided random num-
bers to each of the other subsystems. The RNG is
based on an additive congruent random number gen-
erator found in [7] and produces eight bit random
numbers. It is capable of producing a new random
number every five cycles.

The SendMate unit communicated to other agents
over a blocking read, blocking write data channel
provided in the Handel C hardware description lan-
guage. The agents were completely connected with a
dedicated communication channel from each agent in
the system to every other agent in the system. This
allowed for direct communication between any two
agents with no delays caused by waiting on a commu-
nication channel. It would be anticipated that as the
number of agents increased the routing resources of
the FPGA would be exhausted and a non-completely
connected inter-connect scheme would have to be
used. However, for the implementation tested with
up to 17 agents no such effect was observer.

The SendMate unit was responsible for sending the
agents chromosome and fitness to other agents in the
system to solicit mating. The SendMate unit sends
the chromosome and fitness to an agent determined
by the RNG output and is capable of sending the
chromosome and fitness every two cycles. Delays are
inserted to reduce the frequency that the chromo-
some and fitness are sent to approximately once per
generation. The number of delays could be decreased
to effectively increase the number of mating solicita-
tions per generation and increase the mating selection

3 1 271 135 jl ;7 1 E 1 ;: 1
1591

Table 3: GARC FPGA Performance Data

pressure. The mating selection pressure can thus be
tuned for different fitness fvnctions. Too much mat-
ing selection pressure can lead to premature conver-
gence on a suboptimal solution while too little can
slow the rate of convergence increasing the number
of generations required to find a good solution. The
GetMate unit receives the chromosome and fitness
values from other agents. The mating selection is
performed in this unit. The GetMate unit keeps the
best chromosome sent to the agent for each gener-
ation and provides this chromosome to the Spawn
unit.

The Spawn unit performs the actual spawning of
a child by crossover and/or mutation. If a chromo-
some has been received from another agent then the
Spawn unit performs a crossover operation to form a
child. The child formed is probabilistically mutated
based on the current random number from the RNG.
The Spawn unit also performs the selective replace-
ment replacing the parent’s chromosome if the child’s
fitness is better that the fitness of the parent.

The hardware implementation of the GARC was
executed on the Xilinc FPGA with 3, 5, 9,iand 17
agents. The equivalent number of gates utilized by
the design, average clock cycles per generation, clock
rate, and nanoseconds per generation are shown in
Table 3

An interesting observation from this table is that
the performance of the hardware implementation of
the GARC was nearly constant as the number of
agents and thus the population size increased by
nearly a factor of six. The performance would be
almost perfectly constant except for the fact that the
maximum clock rate of the design decreases from 40
MHz to 30 MHz when the number of agents is in-
creased from five to nine. This is probably due to
longer routing traces being required as the FPGA

5

8200 190
17 15100 190 79

Table 4: GARC FPGA Performance Data

becomes more completely utilized. Another interest-
ing observation that may be made from this table is
that the size of the design in total gates increases in
a nearly linear fashion as the number of agents is in-
creased. Thus, the performance remained nearly con-
stant because the amount of hardware resources that
were utilized increased in proportion to the number
of agents that were employed.

In Table 4, the performance of the GARC is com-
pared to the performance of a software implementa-
tion of the simple genetic algorithm and a software
implementation of the GARC executing on an Pow:
erPC G4 processor at 877 MHz. This table shows the
execution time in nanoseconds per generation of the
simple genetic algorithm, the GARC software imple-
mentation, and the GARC FPGA implementation,
as well as the speedup of the FPGA implementation
compared to the GARC software implementation also
increases.

I

The hardware implementation of the GARC out
performs the software implementation by more than
an order of magnitude for all of the number of agents
tested. Since the performance of the hardware im-
plementation of the GARC is nearly constant as the
number of agents increases and the performance of
the software implementation increased nearly linearly
as the number of agents increases the speedup of the
hardware implementation compared to the software
implementation increases as the number of agents is
increased. As the number of agents in the system is
increases the speedup is 20. It increases to nearly 80
as the number of agents is increased.

5 Comparison to Other Hard-
ware Implementations of
GA's

There have been several other hardware implementa-
tions of genetic algorithms reported in the literature.
Although some are similar to the GARC in some ways
the GARC has characteristics the are different from
the other approaches. A hardware implementation of
the compact genetic algorithm [8] displays a speedup
of nearly three orders of magnitude compared to a
software version. The compact genetic algorithm ma-
nipulates a single l-dimensional vector where l is the
length of the chromosome instead of the entire p o p
ulation of chromosomes. This dramatically reduces
the number of bits required to represent the popula-
tion and aIlows the algorithm to be implemented very
efficiently in hardware. However, the compact GA is
not a full-fledged GA and has limited applicability.

Another hardware implementation of a GA that is
completely distributed as is the GARC is presented
in [IO]. Bowever, this architecture is implemented on
an array of processors instead of on an FPGA. Also,
this architecture has a fixed mating scheme and does
not allow for any individual to mate with any other
as a traditional GA does and as the GARC does.

A hardware implementation of the steady state ge-
netic algorithm is presented in [Si. This implemen-
tation is a hardware pipeline implementation of the
steady state GA and the execution time will increase
linearly with the population size. The GARC's exe-
cution time is nearly constant as the population size
increases. Another implementation of a GA on a
standard FPGA using the Handel C language is pre-
sented in [Ill. This implementation also utilizes a
pipeline approach.

A hardware implementation of the traveling sales-
man problem is presented in [12]. However, this
implementation executes on a custom recodgurable
computer and not a single FPGA. Also, this imple-
mentation is a pipeline implementation whose execu-
tion time increases linearly with the population size
unlike the GARC.

6

. **

, . ' *

6 Conclusions References
[l] Weiss, Gerhard Editor, Multiagent Sys t em A

Mod- Approach to Artificial Intelligence The
MT Press, 1999

The GARC is a modification of the standard genetic
algorithm that was inspired by an agent approach to
the genetic algorithm. The GARC allows the genetic
algorithm to be executed by a number of independent
autonomous agents communicating with one another.
The GARC has no centralized control and no central-
ized location for all of the chromosomes and fitness
values in the system. Instead, the data in the GARC
is distributed throughout the agents with no single
agent having complete knowledge of the system. This
distributed data model and lack of centralized con-
trol make the GARC well suited to implementation
in a reconfigurable computing environment.

The GARC algorithm performed comparably to
traditional genetic algorithm when applied to candi-
date fitness functions. Also, the performance of the
GARC on a standard FPGA was significantly bet-
ter than the performance of the GARC implemented
on a standard computer system. Depending on the
population size the FPGA implementation executed
between 20 and 79 times faster than a conventional
software implementation.

. Furthermore, the execution time of conventional
implementations increases linearly with population
size while the execution time of the implementation
in reconfigurable hardware is nearly constant as the
population size increases. Hence, the performance
speedup of the FPGA implementation as compared
to a traditional software implementation will increase
as the population size increases.

The equivalent number of gates required for the im-
plementation of the GARC on the FPGA increases as
the population size increases in a nearly linear man-
ner. Hence, as FPGA gate sizes increase more agents
should be able to be placed on an FPGA resulting in
higher performance speedups compared to a conven-
tional software implementation. As device technol-
ogy advances and more gates become available tech-
niques such as GARC that scale well to utilize more
hardware resources efficiently while maintaining near
constant execution times will become more attrac-
tive.

[2] Hamid R. Naji ,B. Earl Wells, M. Aborizka,
"Hardware Agents", Proceedings of the ISCA 11th
International Conference on Intelligent Systems
on Emerging Technologies (ICIS- 2002) ,Boston,
MA, July 2002

[3] Hamid R. Naji, John Weir, B. Earl Wells, "Apply-
ing the Multi-Agent Paradigm to Reconfigurable
Hardware , A Sensor Fusion Example ", Pro-
ceedings of the Second International Work Shop
on Intelligent Systems Design and Application
(ISDAZOOZ), Atlanta ,GA, August 2002.

gorithms, MIT Press 1996
[4] Mitchell, Melanie, A n Introduction to Genetic Al-

[5] http://www.iwr.uni-

[6] http://www.celoxica.com/tech/handel-

[7] Knuth, Donald The Art of Computer Program-

[8] Aporntewan, C., and Chongstitvatana, P., "A
Hardware Implementation of the Compact Ge-
netic Algorithm" Proceedings of the 2001 IEEE
Congress on Evolutionary Computation, May 27-
30 2001

[9] Kim, J, Choi Y., Lee C., Chung D. "Imple-
mentation of a High-Performance Genetic Algo-
rithm Processor for Hardware Optimization" IE-
ICE Transactions on Electronics Vol E85-C NO.
1 January 2002

heidelberg.de/groups/comopt/software/TSPLIB95/

c/default .asp

ming, Volume 2

[lo] Sekanina, L. and Dvorak, V., "A Totally Dis-
tributed Genetic Algorithm: From a Cellular Sys-
tem to the Mesh of Processors"

[ll] Peter Martin A Pipelined Hardware Implemen-
tation of Genetic Programming using FPGAs and
Handel-C. EuroGP2002, Kinsale, Ireland

7

[12] Graham, P. and Nelsom B. "A Hardware Ge-
netic Algorithm for the Traveling Salesman Prob-
lem on SPLASH 2", Proceedings of the 5th Inter-
national Workshop on Field Programmable Logic
and Applications, 1995

[13] Chambers, Lance Editor, The Practical Hand-
book of genetic Algorithms Applications Chap
man and Hall, 2001

8

